Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.
نویسندگان
چکیده
A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal mesh current collectors and inexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solution-side as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/carbon layers achieved the highest maximum power density of 1610 +/- 56 mW/m(2) (normalized to cathode projected surface area; 47.0 +/- 1.6 W/m(3) based on liquid volume). This power output was comparable to the best result of 1635 +/- 62 mW/m(2) obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies.
منابع مشابه
Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells
a r t i c l e i n f o High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output....
متن کاملUse of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.
Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a m...
متن کاملIon exchange membrane cathodes for scalable microbial fuel cells.
One of the main challenges for using microbial fuel cells (MFCs) is developing materials and architectures that are economical and generate high power densities. The performance of two cathodes constructed from two low-cost anion (AEM) and cation (CEM) exchange membranes was compared to that achieved using an ultrafiltration (UF) cathode, when the membranes were made electrically conductive usi...
متن کاملThe use and optimization of stainless steel mesh cathodes in microbial electrolysis cells
Microbial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a lowcost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum cataly...
متن کاملCarbon-Based Air-Breathing Cathodes for Microbial Fuel Cells
A comparison between different carbon-based gas-diffusion air-breathing cathodes for microbial fuel cells (MFCs) is presented in this work. A micro-porous layer (MPL) based on carbon black (CB) and an activated carbon (AC) layer were used as catalysts and applied on different supporting materials, including carbon cloth (CC), carbon felt (CF), and stainless steel (SS) forming cathode electrodes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2010